Leaching of Gold from the Waste Mobile Phone Printed Circuit Boards (PCBs) with Ammonium Thiosulphate
نویسندگان
چکیده
The rapid growth in the use of electronic equipments, combined with early obsolescence has contributed enormously to the generation of large quantity of electronic (e) waste. One such e-waste, the mobile phone printed circuit boards (PCBs) contain various precious metals which can be extracted by different hydrometallurgical routes. The present work deals with the recovery of gold using ammonium thiosulfate as a leaching agent from waste mobile PCBs containing 0.021% Au, 0.1% Ag, 56.68% Cu, 1.61% Ca, 1.42% Al, 1.40% Sn, 0.24% Fe, 0.22% Zn, 0.01% Pd etc.. The cutting granules of 0.5 -3.0 mm PCBs were used for leaching in a 500 mL glass beaker in open atmosphere. The effect of various parameters viz. ammonium thiosulfate concentration, copper sulfate concentration, pH and pulp density was studied. A leaching of 56.7% gold was obtained under the optimum condition of 0.1M ammonium thiosulfate, 40 mM copper sulfate, pH: 10-10.5, pulp density: 10 g/L at room temperature and stirring speed of 250 rpm in 8h duration. The maximum leaching of gold in the pH range 10-10.5 may be attributed to the higher stability of the ammonium thiosulfate. The decomposition of ammonium thiosulfate in the different pH ranges was chemically analysed by iodometric method. The ammonium thiosulfate contents in the leach liquors were in agreement with the quantity of gold leached in the respective pH ranges. In this process the copper sulfate worked as a catalyst. The experiment conducted with complete PCBs scrap exhibited a maximum leaching of 78.8% gold at the above optimised condition.
منابع مشابه
Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste
Au-Ag noble metal wastes represent a wide range of waste types and forms, with various accompanying metallic elements. The presented leaching strategy for Au-Ag contained in circuit boards (PCBs) aims at gaining gold and silver in the metallic form. Application of the proposed ammonium thiosulphate leaching process for the treatment of the above mentioned Au-Ag containing wastes represents a pr...
متن کاملLeaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.
Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercri...
متن کاملMetals Content in Printed Circuit Board Waste
This paper an presents analysis of metals in waste of printed circuit boards (PCB) covering types of PCB, segregated from PC computers, mobile phones, and mixed. The presented data identifies metals and other substances found in PCB waste based on elemental and technical analysis of PCBs. PCB categorization based on gold concentration is presented, resulting in two groups: electric and electron...
متن کاملRecovery of Gold, Silver, Copper and Niobium from Printed Circuit Boards Using Leaching Column Technique
Nowadays, over 300 tons of Au are used in electronic equipment each year with other precious and strategic metals such as Ag, Pt, Pd, Cu, Nb, Ta, etc.. After the use-phase, the electronic devices become electronic waste (e-waste); consequently it is important to consider e-waste as a secondary supply for the recovery of these metals. This paper presents the recovery of Au, Ag, Cu and Nb from PC...
متن کاملA long-term static immersion experiment on the leaching behavior of heavy metals from waste printed circuit boards.
Printed circuit boards (PCBs) are the main components of electrical and electronic equipment (EEE). Waste PCBs contain several kinds of heavy metals, including Cu, Pb and Zn. We characterize the leaching of heavy metals (Cu, Pb, Zn and Ni) from waste PCBs in a pH range of 3.0 to 5.6 using a novel approach based on batch pH-static leaching experiments in this work. The results indicate that the ...
متن کامل